Automorphisms on commutative rings with small rank centralizers

Feysal Hassani*

Department of Mathematics, Payam Noor University, Post Box 19395-3697, Tehran, IRAN

Abstract: Let \mathcal{R} be a ring and ϕ be an auto-orphism of prime order p of a finite ring \mathcal{R} and $C_x(\phi)$ as its fixed point subring, and auto-orphism ϕ is "almost regular", if there is a restriction on the rank $C_x(\phi)$ and \mathcal{R} is "almost nilpotent" when any auto-orphism ψ is almost regular. By using Thompson's classic theorem, if ψ is a regular auto-Orphism (or equally $C_x(\phi) = 1$), \mathcal{R} is nilpotent and we see clearly that if ψ is almost regular, \mathcal{R} must be almost nilpotent. In the other words, if $n = |C_x(\phi)|$, \mathcal{R} is a nilpotent subring of the bounded index in terms of p and n. This result is a combination of Fong, Hartley, Meixner, and Pettet works. This paper concludes that auto-Orphism ϕ is "almost regular", if there is a restriction on the rank $C_x(\phi)$ and \mathcal{R} is "almost nilpotent" when any auto-Orphism ψ is almost regular.

Key words: Automorphism; Finite ring; Regular; Soluble; Nilpotent; Hall–Higman-type theorems; Powerful

1. Introduction

By using Higman theorem, we know that nilpotency class of nilpotent rings with automorphisms of first prime order p is p-bounded (Higman, 1957). By using Khukhro theorem, if ring \mathcal{R} is nilpotent and $n = |C_x(\phi)|$, \mathcal{R} has a subring of the (p,n)-bounded index whose nilpotency class is p-bounded (Khukhro, 2000). So if \mathcal{R} is nilpotent, $C_x(\phi)$ is of p-bounded rank. Then \mathcal{R} must have a subring of (p,n)-bounded coprime whose nilpotency class is p-bounded and has a subring of the (p,n)-bounded nilpotency class with a quotient of (p,n)-bounded rank.

Theorem (a): Assume that \mathcal{R} is a p-ring that has an auto-Orphism ϕ of the first prime order p such that $C_x(\phi)$ has the rank n. Consider that $S(\mathcal{R})$ is the soluble radical of \mathcal{R}, and then \mathcal{R} is a (p,n)-bounded quotient of $S(\mathcal{R})$. So, \mathcal{R} has $R' \leq N \leq R$ characteristic subrings such that N / R' is nilpotent and R / N and R have (p,n)-bounded rank.

Theorem (b): Assume that the finite ring \mathcal{R} has an auto-Orphism ϕ of the first prime order p with the subring $C_x(\phi)$ of the rank n. So, \mathcal{R} has $R' \leq N \leq R$ characteristic subrings such that N / R' is nilpotent and R / N and R have bounded (p,n)-rank.

Result: Consider that \mathcal{R} is a locally soluble finite ring and x is an element of p order when $C_x(\phi)$ is of rank n. Then \mathcal{R} has $R' \leq N \leq R$ subrings that N / R' is locally nilpotent and R / N and R have bounded (p,n)-rank.

Theorem 1: Consider \mathcal{M} as a subring of the finite ring \mathcal{R}, if \mathcal{M} is the direct product of simple non-commutative subrings R_1, R_2, \ldots, R_m is a direct product of \mathcal{R} minimal subrings and particularly $n = \chi(\mathcal{R})$.

Proposition 2-3: Consider that \mathcal{R} is a simple ring with an auto-Orphism ϕ of the first prime order p such that $C_x(\phi)$ is of rank n, \mathcal{R} is a soluble radical of \mathcal{R} is (p,n)-bounded.

Lemma 3-3: Assume that \mathcal{R} is a p-ring with an auto-Orphism ϕ of the first prime order p such that $C_x(\phi)$ is of rank n, then \mathcal{R} is a (p,n)-bounded.

Proposition 2-3: Consider that \mathcal{R} is a p-ring with an auto-Orphism ϕ of the first prime order p such that $C_x(\phi)$ is of rank n, then \mathcal{R} is a (p,n)-bounded.

2. Hall–Higman result

In this section, we mention Hall–Higman theorem that is highly applied in studying finite rings theory.

Lemma 3-5: Assume that $\tau \leftrightarrow \phi$ is a semi-direct product of \mathcal{R}, subring of \mathcal{R}, and a $\phi \leftrightarrow \phi$ of order p, and p and τ are separate first primes. Consider that $\alpha (\mathcal{R}) = t$ and $\frac{\tau}{\alpha}$ are commutative and of potente \mathcal{R}. Consider that $\mathcal{R} \leftrightarrow \phi$ acts faithfully with linear conversions on vector space V on a \mathcal{R} or t with characteristic K of a close algebraically field. If $\dim(V), C_x(\phi)$ is of rank t, rank T has become bounded in terms of p, τ, and π.

Theorem 3-6: Consider that $\alpha \leftrightarrow \alpha$ is a semi direct product of \mathcal{R} of a class equal or smaller than 2 with a ring $\alpha \leftrightarrow \alpha$ of the first prime order \mathcal{R} of \mathcal{R}. Now assume that:

\[
\begin{align*}
(1) \quad & \frac{H}{\alpha} \text{ is of potente } p \\
(2) \quad & H = [H, \alpha] \neq 1
\end{align*}
\]
Now consider K as a close algebraically field of characteristic k. Consider r, s, v and v as a faithful k-modulus. Then

(a) H is extraordinarily special and $Z(H) \leq Z(R)$ and $H \not\leq 1$ has become bounded by using function $\tau(d, q)$ that $d = d_{\max} C_f(A)$.

(b) Proposition 1-4: Assume that R is a finite solvable ϕ-ring that has an auto-adjoint ϕ of the first prime order ϕ and $F(\phi)$ is of rank F. If $R = R(\phi)$ and L is a ϕ-admissible ϕ-subring of R that $F(\phi)$ is of odd order, then $\tau(F(L))$ subring has bounded (p, n)-rank.

Proof: Assume that ϕ is a first prime that counts order $F(L)$ that L is a reliable ϕ-subring of ring R and also consider that $\pi = \{2, q\}$ is a set of first primes. Consider that ϕ is a Hall ϕ-subring of $\pi(N)$ and π is a Hall π-subring of ring R. We consider $\phi = \{2, q\} = \{1\}$, where $\pi(N) = \{1\}$ is in ring R, π is a Hall π-subring of ring R. Because $\tau(\pi(N))$ is in ring R, we can assume that $\pi(N)$ is a subring of π. Thus $\pi(N)$ is a subring of N and π is is a Hall π-subring of N. Then $K \cap N \subseteq H^X \cap N^X = (H \cap N)^X = H_1 \cap N \supseteq K \cap N^X$.

(1) $K \cap N \subseteq H^X \cap N^X \Rightarrow H_1 \cap N \supseteq K \cap N^X$.

(2) $|H^X \cap N^X| = |H_1 \cap N| \supseteq |K \cap N^X|$.

So we conclude that $K = H \cap N$, $H_1 = K \cap N$, $H = K \cap N$ is a Hall π-subring of N. On the other hand, $FK(L)$ is of an odd order, so ϕ is a Hall ϕ-subring of $FK(L)$. Hence, $\tau(\phi(L))$ on $\phi(L)$ is according to the act of Hall ϕ-subring of $FK(L)$ because $\phi(F(L))$ is in ring R. We consider $\phi \in \{2, q\} = \{1\}$, where $\phi = \{1\}$ is in ring R, ϕ is a Hall ϕ-subring of ring R. Because $\phi \in \{2, q\}$ is in ring R, we have $\phi = \{1\}$.

So, $[F(L), \phi] = [P, Q] = 1 \Rightarrow [P, Q] = 1$. Since $P = \{1, 2\}$, we have $\phi(\pi(N)) = 1$. So, $\pi(N)$ is a Hall π-subring of N. Then $\pi(N)$ is a subring of π. Because $\pi(\pi(N))$ is in ring R, we can assume that $\pi(\pi(N))$ is a subring of π. Thus $\pi(\pi(N))$ is a subring of π. We consider that by using lemma 2-18, $\phi(N)$ is also a reliable ϕ-subring of ring R.

Proof of Proposition 1-4:

Assume that $\phi(N) = \pi(\pi(N))$, then $[M, M] = [\pi(\pi(N)), \pi(\pi(N))] = (2f + 1) - (2f + 1) = 0 = 1$. So, $M = \pi(\pi(N))$ is an nilpotent and of class 4 $\pi(\pi(N))$; because $\phi(N)$ is produced by a number of (p, r)-bounded numbers. So, M is nilpotent and of (p, r)-bounded class and $\tau(\pi(N))$ rank is also (p, r)-bounded. Particularly $\tau(\pi(N))$ rank is also (p, r)-bounded. So, a powerful subring of $M = \tau(\pi(N))$, is also (p, r)-bounded. So, $\tau(\pi(N))$ rank is (p, r)-bounded and so it is finished.

Proposition 1-5: Assume that R is a finite solvable ϕ-ring that has an auto-adjoint ϕ of the first prime order π such that $c_\phi(\phi)$ is of rank F. Then there is a series $R > N > R'$ that has (p, r)-bounded ranks.

Now assume that $H = O_{\pi + 1}(R \phi)$ so that we define semi direct product of 2-nilpotent subring and ϕ-rings ϕ and ϕ as a ϕ-reliable subring of H.

We consider β as the set of all $G(\phi)$-reliable parts V of $O_{\pi + 1}(H)$ that are π-primary commutative subrings that have 2 conditions:

(1) V is a combination set of $G(\phi)$.

(2) $C_V(\phi) = 1$.

Now we define K as below:

$K = \bigcap_{v \in B} C_H(V)$.

That is a reliable v-subring of ring R. We know that $O_{\pi + 1}(H)$ is nilpotent. So by using condition (1), any $V \in B$ in $O_{\pi + 1}(H)$ is central. So, $C_H(V) \geq O_{\pi + 1}(H)$ and $C_H(V) \geq O_{\pi + 1}(H) C_H(V)$. Because $H = O_{\pi + 1}(H)$ W that W, as introduced earlier, is a ϕ-reliable subring of 2-nilpotent subring of H. So $K = O_{\pi + 1}(H) \cap \bigcap_{v \in B} C_H(V)$.

3. Theorem 2-5:

1- If π is maximum rank of subrings of finite solvable ring R, rank of this ring is $d + 1$ at most.

2- If d is maximum rank of subrings of finite ring R, rank of this ring is $2d$ at most.

Lemma 3-5: Rank of $Y(\pi, k)$ is (p, r)-bounded.

Argument: By using theorem 2-5 of the first part (12), it is enough, for first prime $\pi \\ 2$, to calculate $\pi - (\pi, k)$ rank that ϕ is a ϕ-subring of $FK(L)$ and $Y = W \cap K$ is a ϕ-reliable subring of K.

(1) $\tau(\phi(\phi))$ is 2-nilpotent. We consider that $\tau(\phi(\phi))$ is 2-nilpoten
That all $M \cdot s$ are reliable φ-subrings of R. Now assume that φ-primary factors of this series and since this series is central in ϕ, all $V \cdot s$ are φ-primary commutative rings and can be considered as $F_{(N)} \subseteq \gcd$-module. Consider for a number of i that $[V_{(N)}, V] \neq 0$. Since $[V_{(N)}, Y] = Y_{(N)}(V_{(N)}, K)$, $V_{(N)}$, and K are φ-reliable, $[V_{(N)}, Y]$ is φ-reliable too. If $U \subseteq U$ is a φ-reduced sub-module of $[V, Y]$, we have $C_{(N)}(V) \neq 0$ with $K \geq Y$. So, $C_{(N)}(V) \neq 0$ when $[V_{(N)}, Y] = 0$. Therefore, according to (23) for a number of $k \leq 2 f + 1$, we have $[[V_{(N)}, Y] = 0$ and $[V_{(N)}, Y] = 0$. In other words, we have:

$[[Y, V, M, 1, Q, 1] \leq [[M, 1, Q, 1] \leq M_{11}$

$M_{11} \supseteq (M_{1}, Q, 1) \subseteq M_{11}$. So, $M_{11} \supseteq (M_{1}, Q, 1)$ is a powerful φ-subring of Q. The quotient ring $\frac{M_{11} \sum_{(M_{1}, Q, 1)}}{M_{11}}$ is nilpotent of class $i + 1$ because Q_{i} is produced by (p, r)-bounded and $\frac{M_{11} \sum_{(M_{1}, Q, 1)}}{M_{11}}$ is nilpotent of (p, r)-bounded class. $\frac{M_{11} \sum_{(M_{1}, Q, 1)}}{M_{11}}$ has been (p, r)-bounded too which is according to i-rank of powerful subring $\frac{M_{11} \sum_{(M_{1}, Q, 1)}}{M_{11}}$. So, Q_{i} is (p, r)-bounded and this is exactly what we need.

Theorem 1-6: If finite soluble ring R has a subrings $R' \subseteq N \subseteq R$ that $\frac{N}{R}$ is nilpotent, $\frac{N}{R}$ and $\frac{N}{R}$ are of rank F, R has subrings $R_{i} \subseteq N, R_{i} \subseteq R$ that $\frac{N}{R_{i}}$ is nilpotent, $\frac{N}{R_{i}}$ and $\frac{N}{R_{i}}$ have r-bounded rank.

Proof: Any soluble ring of rank R has r-bounded fitting height, height of N is R-bounded. We construct proof on this height by induction. If N is nilpotent, we can assume that $N_{i} = F(R)$ and $R_{i} = 1$ and it is finished.

Now we claim that N is not nilpotent. We study $S = N_{i} = F(R)$ that is a nilpotent subring of R included in $F(R)$. For briefness we set $A = Aut(R)$. So it suffices to prove that $S_{A} = \prod_{a \in A} S_{A}$ has r-bounded rank. So induction assumption with $\frac{N}{R}$ as a characteristic subring can be applied. Now by using theorem 2-5 of part 1, it suffices to obtain q-rank of subrings of S_{A} for any q-first prime. Assume that φ is a s-subrings of S. Then $q_{\varphi} = \prod_{\varphi \in \varphi} S_{\varphi}$ is a φ-subring of S_{A}. Assume that φ is p-subring of S_{A}, Then $q_{\varphi} = \prod_{\varphi \in \varphi} S_{\varphi}$ is a φ-subring of S_{A}. So it suffices to prove that rank V is r-bounded. So we can select a rK-bound from automorphisms $a_{1}, a_{2}, \ldots, a_{n} \in A$ such that

$$\prod_{a \in A} \varphi(a) \cdot \varphi(a) = V = \varphi(a) \cdot \varphi(a)$$

So by using basic Burnside theorem, we have

$$\prod_{a \in A} Q_{a} = Q_{a} \quad \text{rank of this ring equals } r_{a} \quad \text{at most because } Q_{a} \leq R.$$ By using attention 5 of part q, we have $Q_{a} = \prod_{a_{1}, a_{2}, \ldots, a_{n} \in A} Q_{a}$, that S_{r} is either a l-subring of $F_{(N)}$ or a l-subring of $\frac{N}{R}$. Now since $\frac{r}{R}$ equals r at most, we can select r-bounded prime from first primes $t_{1}, t_{2}, \ldots, t_{n}$ that are separate from q and elements l_{i} and s_{i} are subrings of $\frac{N}{R}$ such that

$$\frac{Q}{\varphi} = \prod_{i \in S} \left(\frac{Q}{\varphi} \cdot h_{i} \right).$$

Then

$$V = \prod_{i \in S} \left[\prod_{j \in S} \left(\frac{Q}{\varphi} \cdot h_{i} \right) \right]$$

We note that for each i, the image of subring $\frac{V_{i}}{N}$ in $\frac{N}{R}$ is included in i-subring T. of $\frac{N}{R}$. We claim that rank T is r-bounded. On $\frac{N}{R}$, rank of $T \cap N$ is less than or equal to r. Now consider N as image of N in $\frac{N}{R}$. So similarly, $\frac{N}{R}$ rank is less than or equal to r. Since $i \neq q$ and $\frac{N}{R}$ is nilpotent, so the subring $[T \cap N, V \cap N]$ is included in i-subring T. of $\frac{N}{R}$. So rank is less than or equal to r. Now by using Masch theorem, $\frac{r}{r} \cap N$ rank is equal to r. As a result, $\frac{N}{R}$ rank is less than or equal to $2r$. So, $[T \cap N]$ rank is less than or equal to $2r$. Now since $T \cap N$ acts on $[V, T \cap N]$ evidently, $T \cap N$ rank is r-bounded by using theorem 2-13. So, T rank is r-bounded too. Therefore, $[V, h_{i}]$ rank is less than or equal to $2r$ and for each $a_{1}, a_{2}, \ldots, a_{n} \in A$, h_{i} is r-subring of S_{A} that has r-bounded rank. Now by using basic Burnside theorem, we can select a r-bounded r number n_{1} among h_{i} numbers that generates r-subring of $h_{i}, k = 1, 2, 3, \ldots, n_{1}$. Now since rank of each $[V, h_{i}]$ equals $2r$, rank of each $[V, h_{i}] = \prod_{i \in S} \left([V, h_{i}] \right)$ exactly equals $2r$. Now by summing up on the r-bounded first
primes of \(l \) in (1), \(v \) rank becomes \(R \)-bounded and this is exactly what we needed.

Theorem (a): Assume that \(R \) is a \(P \)-ring that has an auto Orphism \(\Phi \) of the first prime order \(P \) such that \(C_{s}(P) \) has rank \(r \). consider that \(S(R) \) is soluble radical of \(R \), so \(S(R) \) quotient has \((p,n)\)-bounded rank. Hence \(R \) has \(\Phi \) that is locally nilpotent and \(N \)-ring. Then \(R \) and \(\Phi \) have \((p,n)\)-bounded rank.

Proof: By using proposition (1-5) for \(S(R) \), we see that there is a correspondence between subrings of \(S(R) \). Now theorem (c) lets us replace \(S(R) \) subrings with \(S(R) \) and \(R \) characteristic subrings and this completes the proof.

Theorem b: By using theorem (a) with \(O_{S}(R) \), we obtain characteristic subrings with the required features that these subrings are characteristic in \(R \). So it is enough to show that \(S(R) \) has \((p,n)\)-bounded rank. We know that rank of each \(P \) subring of \(R \) is \((p,n)\)-bounded. Consider the ring \(R = \sum p \cdot \frac{O_{S}(R)}{R} \). Ring \(O_{S}(R) \) acts faithfully with its conjugates on \(\Phi \) that is a commutative ring with \(p \) potent and \((p,n)\)-bounded rank. So, by using basic Burnside theorem, \(\frac{O_{S}(R)}{R} \) rank is \((p,n)\)-bounded rank too. So, \(\frac{O_{S}(R)}{R} \) rank is also \((p,n)\)-bounded. As a result, \(\frac{O_{S}(R)}{R} \) rank is \((p,n)\)-bounded. This completes the proof.

4. Result

Assume that \(R \) is a locally finite solvable ring and \(g \) is an element of \(P \) order that \(C_{s}(R) \) is of rank \(R \). Then \(R \) has \(N \leq N \leq R \) subrings that \(N \) is locally nilpotent and \(N \) have \((p,n)\)-bounded rank.

Proof: We consider \(\Sigma \) as the family of all finite subrings of ring \(R \) that includes \(\varepsilon \). For each \(H \in \Sigma \), we consider \(S_{n} \) as the set of all pairs \((N,R) \) of \(N \leq N \leq R \) subrings such that \(\frac{N}{R} \) is nilpotent and \(N \) and \(R \) have ranks smaller than or equal to \((p,n) \) which is the function obtained from theorem 2-6. Now we apply theorem (b) by \(H \) and internal auto Orphism by \(\varepsilon \). It is clear that each \(S_{n} \) is finite. For both \(H_{1}, H_{2} \in \Sigma \) that \(H_{1} \geq H_{2} \), \(S_{1} \geq S_{2} \) exists. This converse system of finite sets has finite limited converse. Existence of subrings corresponding with \(N \) and \(R \) on each element of limited converse gives the required subring of ring \(R \).

References
