Concentration distribution of stibiumcontaining components and particles in oxycarboxylic acids solutions

Z. Maimekov¹, D. Sambayeva², M. Dzhetimov^{3,*}, E. Shabdanova⁴

¹Candidate Kyrgyz-Turkish University Manas, Bishkek city, Kyrgyzstan

²Institute of Mining and Mountain Technologies named after academician U. Asanaliyev of MEaS KR, Bishkek city, Kyrgyzstan ³Zhetysu State University named after I. Zhansugurov, Taldykorgan, 040010, Microrayon 4, house 68, apartment 31, Republic of

Kazakhstan

⁴Institute of Chemistry and Chemical Technology NAS KR, Bishkek city, Kyrgyzstan

Abstract: In this work distribution of stibiumcontaining components and particles in the gas phase depending on the temperature (T =285-1005 K) in the following systems was researched: oxycarbonic acids - sulfides, stibium-oxide, stibium-water at different ratios of initial products. Formation of condensed substances of the following type was shown: Sb(c), Sb₂O₃(c), Sb₂SO₃(c), and also simple stibium compounds: Sb, Sb₂, Sb₃, Sb₄, SbO, Sb₄O₆, SbH, SbH₃ and SbS. The condensed stibium Sb (c) is formed within temperature alteration from 448 K up to 998K. It was noted that with increase of the temperature of conversion process the concentrations of: Sb, Sb₂, Sb₃, Sb₄, SbO, Sb₄O₆, SbH, SbH₃ and SbS increase, but concentrations of: Sb₂CO₃(c), Sb₂SO₃(c), Sb₂O₃-H₂O three types of stibium oxides were found: SbO, Sb₂O₃(c), Sb₄O₆. In heterogeneous systems except stibiumcontaining substances also H,C,O,S -containing components and particles were formed. Formation of condensed stibium is connected with interaction of oxide and stibium sulfide with reducers of the following type: H₂, C(c), CO, CH₄.

Key words: *Stibium; Oxycarboxylic acid; Oxide; Sulfide; Concentration; Distribution*

1. Introduction

It is known that the main solvent for stibium compounds is mineral acids, sulfides and chlorides of alkaline metals, solutions of potassium (sodium) hydroxide, and among organic compounds in recent years in the technological purposes they often use oxycarboxylic acids, but their use as the main solvent by producing stibium and its compounds has purely analytical character (Usubakunov, M., 1981: Maimekov, Z., and others, 2013; Sambayeva, D., and others, 2013; Shabdanova, E., and others, 2013). Meanwhile, tartrate stibium solutions are steadier, they are not exposed to hydrolysis when heating and, especially at dilution with water. For example, increase of concentration of tartaric acid increases solubility of stibium trioxide.

It was noted that solubility of stibium trioxide has direct dependence on the dissociation constant of the used acids. Here it should be noted, that at dissolving stibium oxides and sulfides in solutions of organic oxyacids there is chemical balance between them that changes the speed of compound dissolution (Shabdanova, E., 2013). Respectively, studying physical and chemical characteristics of some heterogeneous systems (Shabdanova, E., 2014; Shabdanova, E., Tunguchbekova, Zh., and others, 2015): Sb₂O₃- Sb₂S₃-tartaric acid (C₄H₆O₆)-H₂O,

¹ Corresponding Author.

Sb₂O₃- Sb₂S₃- citric acid (C₆H₈O₇)-H₂O, Sb₂O₃- Sb₂S₃ – malic acid (C4H₆O₅)-H₂O, Sb₂O₃-Sb₂S₃- succinic acid (C₄H₆O₅)-H₂O, Sb₂O₃- Sb₂S₃(C₄H₆O₅)-H₂O, Sb₂O₃- Sb₂S₃- lactic acid (C₃H₆O₃)- H₂O, Sb₂O₃- Sb₂S₃- glycolic acid (C₂H₄O₃) - H₂O with the purpose of establishing concentration distribution of stibiumcontaining components and particles in oxycarboxylic acids solutions at wide intervals of temperature alterations corresponding to the work mode of pyro -and hydrometallurgical leaching of stibium compounds is a topical scientific task.

2. Materials and the methods

The work considers the following heterogeneous systems: $Sb_2O_3-Sb_2S_3-C_4H_6O_6-H_2O_6$ Sb₂O₃-Sb₂S₃- $C_6H_8O_7-H_2O_1$, $Sb_2O_3-Sb_2S_3-C_4H_6O_5-H_2O_1$ Sb₂O₃-Sb₂S₃-C₄H₆O₄-H₂O, Sb₂O₃-Sb₂S₃-C₃H₆O₃-H₂O, Sb₂O₃-Sb₂S₃-C₂H₄O₃-H₂O for the purpose of establishing concentration distribution of stibiumcontaining components and particles at entropy maximum. The models that have a possibility of forming gaseous substances, electroneutral and ionized components formed the methodical basis of calculated parameters. The balanced data of components in the system are determined by solving the task about estimation of entropy extremum. The database of thermodynamic properties of individual substances includes information on Sb₂O₃, Sb₂S₃, H₂O, $C_4H_6O_6, C_6H_8O_7, C_4H_6O_5, C_4H_6O_4, C_3H_6O_3, C_2H_4O_3$

(Sinyarev., G.,1982, Trusov, B., 1995, Maimekov, Z., 2015). Physical and chemical analysis of the gas phase was done on the basis of multifunctional gas analyzer Visit 01-L/LR. For measuring the content of solid particles the gas analyzer has a special built-in sounder. Along with gas concentration, the temperature of currents was also measured.

The main mode parameters of the gas analyzer changed over a wide range of temperature change. Concentration of components in the gas phase on the basis of measuring with gas analyzer of Visit 01 L/R is expressed in international units mln⁻¹. Recalculation of concentration values is done at corresponding values of temperature, pressure, molecular mass of some gases.

3. Results of the researches and their discussion

Distribution of stibium-containing components and particles in the gas phase (mol/kg) depending on the temperature (T =285-1005 K) in the following systems: C4H6O6-Sb2S3- Sb2O3-H2O, C6H8O7 -Sb2S3- $Sb_2O_3-H_2O$, $C_2H_4O_3$ - Sb_2S_3 - $Sb_2O_3-H_2O$, $C_4H_6O_5$ - Sb_2S_3 - $Sb_2O_3-H_2O_1C_4H_6O_4-Sb_2S_3-Sb_2O_3-H_2O_1$, $C_3H_6O_3$, $-Sb_2S_3-Sb_2O_3-H_2O_2$ Sb₂O₃-H₂O,to P =0,1 MPa and ratios of initial products (3:1:1:1) at entropy maximum showed forming of condensed substances of the following type (tab. 1, fig. 1 and 2): Sb(c), $Sb_2O_3(c)$, $Sb_2SO_3(c)$, and also simple stibium compounds: Sb, Sb₂, Sb₃, Sb₄, SbO, Sb₄O₆, SbH, SbH₃ и SbS. Condensed Sb (c) stibium is formed within temperature alterations from 448 K up to 998K. Similar distribution of stibium-containing components and particles in the gas phase depending on temperature was noted also in some systems

including tartaric acid, stibium oxide and water (H₂C₄H₄O₆-Sb₂O₃-H₂O (3:1:1), P =0.1 MPa, T=285-1005 K) and tartaric acid, stibium sulfide and water $(H_2C_4H_4O_6-Sb_2S_3-H_2O_{(3:1:1)}, P = 0.1 MPa, T=285-$ 1005 K). From figures 1 and 2 we can see that with increase of temperature of conversion process the concentration of: Sb, Sb₂, Sb₃, Sb₄, SbO, Sb₄O₆, SbH, SbH₃ and SbS increase, but concentrations of: Sb(c), $Sb_2O_3(c)$, $Sb_2SO_3(c)$ change in steps; maxima were noted at the temperature 648K. In the system C₄H₆O₆-Sb₂S₃-Sb₂O₃-H₂O three types of stibium oxides were formed: SbO, $Sb_2O_3(c)$, Sb_4O_6 . In these heterogeneous systems except stibium-containing substances also: H,C,O,S -containing components and particles were formed: H, H₂, OH, H₂O, S, S₂, S₃, S₄, SO, SO₂, S₂O, SH, H₂S, SOH, H₂SO, C(c), CO, CO₂, CH₃, CH₄, C₂H₂, C₂H₄, C₂H₅, C₂H₆, C₃H₈, CHO, CHO₂, CH₂O, CH₂O₂, C₂H₄O₂, C₃H₆O, CS, CS₂, COS. Hence it follows that formation of condensed stibium is connected with interaction of stibium oxide and sulfide with reducers of the following type: H₂, C(c), CO, CH₄. The content of condensed carbon is from 7,443 mol/kg up to 0,374 mol/kg within temperature change from 298 K up to 748 K, and water from 18,361-9,418 mol/kg, molecular hydrogen 0,0001 - 8,371 mol/kg at temperature of 298-998K, respectively; carbon oxide CO = 0.0005-5.050 mol/kg at temperature of 498-998 K; carbon dioxide $CO_2 = 5,439-10,226 \text{ mol/kg}$ (298-748K), 10,226-8,223 mol/kg (798-998K); CH4 = 0,442-2,192 mol/kg (298-698K); C (c) of =7,443-0,374 mol/kg (298-748K); Sb(c) = 1,146-2,124 mol/kg (298-698K), 2,124-1,986 mol/kg (798-998K).

Fig. 1: Distribution of stibium-containing components and particles in the gas phase depending on the temperature in the system: H₂C₄H₄O₆-Sb₂O₃-H₂O (3:1:1) at P =0.1 MPa, T=285-1005 K

Maimekov et al/WALIA, 32(S2) 2016, Pages: 1-6

Table 1: Distribution of stibium-containing components and particles in the gas phase (mol/kg) depending on the temperaturein the systems at P =0,1 MPa and ratios of initial products (3:1:1:1)(With tartaric acid $C_4H_6O_6$ -Sb₂S₃- Sb₂O₃-H₂O)

(With tai tai it attu t411606-50253- 50203-fi20)							
Т	Sb(c)	Sb	Sb ₂	Sb ₃	Sb ₄	SbO	
448	1,14691	1,93E-22	2,92E-18	1,93E-22	2,58E-15	1,93E-22	
548	1,23761	9,11E-18	2,69E-13	1,15E-16	9,35E-11	3,1E-22	
598	1,45764	1,21E-15	1,93E-11	2,35E-14	4,66E-09	5,92E-20	
648	1,97871	7,68E-14	7,18E-10	2,11E-12	1,26E-07	5,08E-18	
698	2,12483	2,68E-12	1,57E-08	9,78E-11	2,1E-06	2,28E-16	
998	1,98692	2,1E-06	0,001412	0,000116	0,033582	1,67E-09	
Т	Sb ₂ O ₃ (c)	Sb4O6	SbH	SbH ₃	SbS	Sb ₂ S ₃ (c)	
440							
448	2,86E-30	4,73E-14	5,59E-20	7,05E-21	4,79E-18	0,488961	
448 548	2,86E-30 2,86E-30	4,73E-14 9,58E-15	5,59E-20 8,49E-15	7,05E-21 1,67E-16	4,79E-18 4,29E-13	0,488961 0,443613	
448 548 598	2,86E-30 2,86E-30 2,86E-30	4,73E-14 9,58E-15 5,5E-15	5,59E-20 8,49E-15 7,53E-13	7,05E-21 1,67E-16 6,92E-15	4,79E-18 4,29E-13 3,26E-11	0,488961 0,443613 0,333596	
448 548 598 648	2,86E-30 2,86E-30 2,86E-30 2,86E-30	4,73E-14 9,58E-15 5,5E-15 3,53E-15	5,59E-20 8,49E-15 7,53E-13 3,36E-11	7,05E-21 1,67E-16 6,92E-15 1,51E-13	4,79E-18 4,29E-13 3,26E-11 1,28E-09	0,488961 0,443613 0,333596 0,073061	
448 548 598 648 698	2,86E-30 2,86E-30 2,86E-30 2,86E-30 2,86E-30	4,73E-14 9,58E-15 5,5E-15 3,53E-15 2,37E-15	5,59E-20 8,49E-15 7,53E-13 3,36E-11 8,81E-10	7,05E-21 1,67E-16 6,92E-15 1,51E-13 2,11E-12	4,79E-18 4,29E-13 3,26E-11 1,28E-09 1,5E-08	0,488961 0,443613 0,333596 0,073061 2,86E-30	
448 548 598 648 698 998	2,86E-30 2,86E-30 2,86E-30 2,86E-30 2,86E-30 2,86E-30	4,73E-14 9,58E-15 5,5E-15 3,53E-15 2,37E-15 3,16E-13	5,59E-20 8,49E-15 7,53E-13 3,36E-11 8,81E-10 0,000172	7,05E-21 1,67E-16 6,92E-15 1,51E-13 2,11E-12 9,94E-09	4,79E-18 4,29E-13 3,26E-11 1,28E-09 1,5E-08 0,000243	0,488961 0,443613 0,333596 0,073061 2,86E-30 2,86E-30	

Z.M	aimeko	ov, E. S	Shabo	lanova,	2013

With citric acid C ₆ H ₈ O ₇ -Sb ₂ S ₃ - Sb ₂ O ₃ -H ₂ O							
Т	Sb(c)	Sb	Sb ₂	Sb ₃	Sb ₄	SbO	
448	1,14707	1,93E-22	2,84E-18	1,93E-22	2,51E-15	1,93E-22	
548	1,24087	8,87E-18	2,62E-13	1,12E-16	9,1E-11	2,9E-22	
598	1,46744	1,18E-15	1,88E-11	2,29E-14	4,54E-09	5,56E-20	
648	2,00307	7,49E-14	7,01E-10	2,06E-12	1,23E-07	4,79E-18	
698	2,12483	2,61E-12	1,54E-08	9,55E-11	2,05E-06	2,16E-16	
998	1,97594	2,27E-06	0,001525	0,000126	0,036266	9,18E-10	
Т	Sb ₂ O ₃ (c	Sb4O6	SbH	SbH ₃	SbS	Sb ₂ S ₃ (c)	
448	2,86E-30	3,53E-15	5,64E-20	7,66E-21	3,87E-18	0,488881	
548	2,86E-30	3,98E-18	8,52E-15	1,78E-16	4,17E-13	0,441983	
598	2,86E-30	2,23E-12	7,55E-13	7,34E-15	3,18E-11	0,328694	
648	1E-30	4,17E-13	3,37E-11	1,6E-13	1,24E-09	0,060882	
698	2,86E-30	2,61E-12	8,84E-10	2,23E-12	1,42E-08	2,86E-30	
000	2.86E-30	4 54F-09	0.00021	1 54F-08	0.000189	2.86F-30	
990	2,001-30	4,541 05	0,00021	1,541 00	0,000107	2,001 30	

Z.Maimekov, E.Shabdanova, 2013

With glycolic acid C ₂ H ₄ O ₃ - Sb ₂ O ₃ -H ₂ O								
Т	Sb(c)	Sb	Sb ₂	Sb ₃	Sb ₄			
448	1,14767	1,93E-22	3,09E-18	1,93E-22	2,73E-15			
548	1,25584	9,65E-18	2,85E-13	1,21E-16	9,9E-11			
598	1,51605	1,29E-15	2,05E-11	2,49E-14	4,94E-09			
648	2,12483	8,17E-14	7,64E-10	2,24E-12	1,34E-07			
898	2,09671	8,56E-08	0,000125	6,47E-06	0,006957			
998	1,97443	2,29E-06	0,00154	0,000127	0,036632			
Т	Sb ₂ O ₃ (c)	SbH	SbH ₃	SbS	Sb ₂ S ₃ (c)			
448	2,86E-30	6,36E-20	9,27E-21	4,21E-18	0,488582			
548	2,86E-30	9,54E-15	2,12E-16	4,54E-13	0,434495			
598	2,86E-30	9,54E-15	2,12E-16	4,54E-13	0,434495			
648	2,86E-30	3,77E-11	1,88E-13	1,35E-09	2,38E-18			
898	2,86E-30	0,000012	2,98E-09	1,54E-05	2,86E-30			

Maimekov et al/WALIA, 32(S2) 2016, Pages: 1-6

998	1,5E-09	2,86E-30	0,0002	205 1,4	41E-08	0,000205	
With malic acid C ₄ H ₆ O ₅ -Sb ₂ S ₃ - Sb ₂ O ₃ -H ₂ O							
Т	Sb(c)	Sb	Sb ₂	Sb ₃	Sb ₄	SbO	
448	0,766494	1,93E-22	3,04E-18	1,93E-22	2,69E-15	1,93E-22	
548	0,874337	9,51E-18	2,81E-13	1,2E-16	9,76E-11	2,96E-22	
598	1,13353	1,27E-15	2,02E-11	2,45E-14	4,87E-09	5,7E-20	
648	1,74505	8,06E-14	7,53E-10	2,21E-12	1,33E-07	4,93E-18	
698	2,07076	2,83E-12	1,66E-08	1,03E-10	2,21E-06	2,24E-16	
998	1,92037	2,29E-06	0,001539	0,000127	0,036615	1,41E-09	
Т	Sb ₂ O ₃ (c)	SbH	SbH ₃	SbS	Sb ₂ S ₃ (c)		
448	2,86E-30	6,31E-20	9,33E-21	4,15E-18	0,652136		
548	2,86E-30	9,46E-15	2,13E-16	4,47E-13	0,598214		
598	2,86E-30	8,37E-13	8,69E-15	3,41E-11	0,468617		
648	2,86E-30	3,73E-11	1,88E-13	1,34E-09	0,162858		
698	2,86E-30	9,77E-10	2,58E-12	1,81E-08	2,86E-30		
998	2,86E-30	0,000205	1,4E-08	0,000273	2,86E-30		
		With su	ccinic acid C ₄ H ₆ O ₄	4 -Sb ₂ S ₃ - Sb ₂ O ₃ -H ₂	0		
T	Sb(c)	Sb	Sb ₂	Sb ₃	Sb4	SbO	
448	1,14768	1,93E-22	2,9E-18	1,93E-22	2,56E-15	1,93E-22	
548	1,25491	9,07E-18	2,68E-13	1,14E-16	9,3E-11	2,73E-22	
598	1,51183	1,21E-15	1,93E-11	2,34E-14	4,65E-09	5,27E-20	
648	2,11729	7,7E-14	7,19E-10	2,11E-12	1,27E-07	4,57E-18	
698	2,12483	2,68E-12	1,58E-08	9,79E-11	2,1E-06	2,07E-16	
998	1,96164	2,48E-06	0,001672	0,000138	0,039757	6,38E-10	
Т	Sb2O3(c)	SbH	SbH ₃	SbS	Sb ₂ S ₃ (c)		
448	2,86E-30	6,18E-20	9,62E-21	3,95E-18	0,488575		
548	2,86E-30	9,21E-15	2,16E-16	4,26E-13	0,43496		
598	2,86E-30	8,14E-13	8,8E-15	3,25E-11	0,3065		
648	1E-30	3,63E-11	1,9E-13	1,28E-09	0,003769		
698	2,86E-30	9,55E-10	2,67E-12	1,28E-08	2,86E-30		
998	2,86E-30	0,000249	2,15E-08	0,000162	2,86E-30		
т	Sh(a)	With la	actic acid C ₃ H ₆ O ₃ ·	-Sb ₂ S ₃ - Sb ₂ O ₃ -H ₂ O	Ch	cho	
449	1 1 4 9 7 1	5 0 1.02E.22	2 11E 10	SU3	SD4	1 02E 22	
448	1,148/1	1,93E-22	3,11E-18	1,93E-22	2,75E-15	1,93E-22	
548	1,27856	9,75E-18	2,88E-13	1,23E-10	1E-10	2,05E-22	
598	1,58697	1,3E-15	2,08E-11	2,52E-14	5E-09	5,16E-20	
648	2,12483	8,28E-14	7,74E-10	2,27E-12	1,36E-07	4,5E-18	
948	2,0426	5,67E-07	0,000557	3,72E-05	0,020223	8,76E-11	
998	1,94673	2,71E-06	0,001824	0,00015	0,043393	6,3E-10	
T	Sb ₂ O ₃ (c)	SbH	SbH ₃	SbS	Sb ₂ O ₃ (c)		
448	2,86E-30	7,14E-20	1,29E-20	4,25E-18	0,488062		
548	2,86E-30	1,05E-14	2,78E-16	4,58E-13	0,423137		
598	2,86E-30	9,27E-13	1,12E-14	3,5E-11	0,268931		
648	2,86E-30	4,14E-11	2,44E-13	1,15E-09	4,5E-23		
948	2,86E-30	7,26E-05	1,24E-08	4,47E-05	2,86E-30		
998	2,86E-30	0,000287	2,77E-08	0,000145	2,86E-30		

Fig. 2: Distribution of stibium-containing components and particles in the gas phase depending on the temperature in the system: H₂C₄H₄O₆-Sb₂S₃-H₂O (3:1:1) at P =0.1 MPas, T=285-1005

Thus, concentration distribution of stibium components and particles containing in oxycarboxylic acids solutions (fig. 1 and 2, tab. 1) showed formation of different stibium containing components and particles of the following type: Sb, Sb₂, Sb₃, Sb₄, SbO, Sb₄O₆, SbH, SbH₃, SbS, Sb(c), $Sb_2O_3(c)$, $Sb_2SO_3(c)$. At the same time the content of condensed stibium in the temperature limits 448-998K is 1.1487-1.9467 mol/kg, and condensed stibium sulfide is from 0,65 to 0,16 in the temperature limits from 448-648K, at the same time the amount of stibium trioxide in the gas phase is minimum and equals to 2,86E - 30 mol/kg. Correspondingly, the optimum mode of receiving stibium in pyrometallurgical processes varies within 448-998K.

4. Conclusions

1. The following systems were studied: stibium oxide (sulfide) - oxycarboxylic acids- H_2O at wide intervals of temperature change corresponding to the operating mode of pyrometallurgical processes of stibium sublimation from its sparingly soluble compounds.

2. Equilibrium compositions and concentration of components in the following systems were determined: oxide, stibium-sulfide, stibium – oxycarboxylic acides- H_2O and concentration distribution of Sb, C, H, O, S-containing components and particles in the gas phase at wide intervals of temperature change and ratios of initial components

was also established. The obtained data enable to determine the limiting stages of the stibium sublimation process enabling to predict efficiency of doing mining works.

3. Equilibrium compositions and concentration of decomposition products of stibium oxide and sulfide with oxycarboxylic acids showed that in the gas phase stibium compounds turn into the form of the following type: Sb(c), Sb, Sb₂ , Sb₃, Sb₄, SbO, Sb₂O₃(c), Sb₄O₆, SbH, SbH₃, SbS, Sb₂S₃(c). Condensed stibium Sb (c) is formed within temperature change from 448 K to 998K.

The authors express their thanks to the employees of the production department of "Kadamzhaisky Stibium Combine" JSC ("KSK" JSC) for providing the data on the problems of processing stibium ore deposits and secondary waste.

References

- Maimekov, H., Sambayeva, D., Tunguchbekova, Zh., Shabdanova, E., 2013. Concentration distribution of stibium-containing particles in the system: Sb₂S₃-MnO₂-H₂SO₄-NaCl at different temperatures.//Mathematical International Scientific Conference. - Taraz, V.1. – P. 16-19.
- Maimekov, Z., 2015. Determination of equilibrium concentrations of components of the following system: malic acid- stibium sulfide -water at wide ranges of temperature change - Scientific

Educational Journal "Engineer". – Bishkek,-№9. – P. 359-363.

- Sambayeva, D., Shabdanova, E., Tunguchbekova, Zh., Maimekov, M., Maimekov, Z., 2013. Physical and chemical modeling of the system Sb₂S₃-K₂MnO₄-H₂SO₄-ZnCl₂ and predicting of chemical composition of reaction products.//XXIV International Scientific Conference. Collection of articles. - Penza, P. 127-130.
- Shabdanova, E., 2013. Thermodynamic parameters of stibium and some of its compounds - Science and new technologies. - Bishkek, No. 3. – P. 102-109.
- Shabdanova, E., 2014. Concentration distribution of stibium-containing components in the system MoO_3 - WO_3 - Sb_2O_3 - $H_2C_4O_6$ - H_2O at P =0,1 MPa and T=285-1005K Chemical Journal of Kazakhstan. Almaty, No. 2. P. 223-227.
- Shabdanova, E., Sambayeva, D., Tunguchbekova, Zh., Maimekov, U., Maimekov, Z., 2013. Studying the system: Sb_2S_3 - K_2MnO_4 - H_2SO_4 - $ZnCl_2$ for the purpose of stibium leaching in the oxidizing

medium.//V International Scientific Conference - Taraz, P. 167-171.

- Shabdanova, E., Tunguchbekova, Zh., Sambayeva, D., Maimekov, M., 2012. Physical and chemical modeling of the system H₂C₄H₄O₆-Sb₂S₃-H₂O and determination of the spectrum of concentration distribution of stibium-containing components in the gas phase. - Science and new technologies. -Bishkek, - No. 4. – P. 121-125.
- Sinyarev, G., Vatolin, N., Trusov, B., Moiseyev, G., 1982. Use of computers for thermodynamic calculations of metallurgical processes - Moscow: Nauka, P. 264
- Trusov, B., 1995. Modeling of chemical and phase balance at high temperatures (ASTRA. 4/PC) -Moscow, P.43.
- Usubakunov, M., 1981. Research of stibium compounds (III) with oxycarboxylic acids and developing the ways of receiving especially pure stibium and its compounds/. Frunze, P. 28-31.